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Abstract With a Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the subseasonal
prediction of wintertime (December–February) surface air temperature (SAT) is investigated through the
analysis of 11-year hindcasts. Significant subseasonal week 3–5 correlation skill exists over a large portion of the
global land domain, and the predictability originates primarily from the eight most predictable SAT modes. The
first three modes, identified as the El Niño-Southern Oscillation mode, the North Atlantic Oscillation mode,
and the Eurasia Meridional Dipole mode, can be skillfully predicted more than 5 weeks in advance. The North
Atlantic Oscillation and Eurasia Meridional Dipole modes are strongly correlated with the initial stratospheric
polar vortex strength, highlighting the role of stratosphere in subseasonal prediction. Interestingly, the
Madden-Julian Oscillation is not essential for the subseasonal land SAT prediction in the Northern Hemisphere
extratropics. The spatial correlation skill exhibits considerable intraseasonal and interannual fluctuations,
indicative of the importance to identify the time window of opportunity for subseasonal prediction.

Plain Language Summary Subseasonal prediction has important societal and economic
impacts, while it remains very challenging as a prediction frontier. In this study, we use a dynamic model
with simple initialization method to investigate the subseasonal week 3–5 prediction of the surface air
temperature (SAT) in boreal winter. It is encouraging to note that the model has a significant week 3–5 SAT
prediction skill over a large portion of the land regions. Using a statistical method, we further examine the
potential predictability sources and find eight most predictable modes with the first three identified as the El
Niño/Southern Oscillation, the North Atlantic Oscillation, and the Eurasia Meridional Dipole Mode.
Interestingly, although the Madden-Julian Oscillation is the dominant intraseasonal mode over the tropics,
it has relatively weak impacts on the SAT prediction in the Northern Hemisphere extratropics. The
strong fluctuation of the prediction skill varies from week to week and year to year highlighting the
importance to identify the time window of opportunity for subseasonal prediction. The role of stratospheric
polar vortex in subseasonal SAT prediction is also shown.

1. Introduction

Subseasonal prediction, usually referring to the timescale between 2 weeks and 2months, is emerging as one
of the top priorities in prediction research, given its connection with the growing societal demand associated
with public health, disaster preparedness, water management, and so on. Subseasonal timescales have been
long regarded as a “predictability desert,” and the subseasonal prediction is still at its infancy and developing
stage. How to improve the current subseasonal prediction skill is one of the most challenging but important
tasks in the weather and climate prediction community.

Despite being in its early stages, considerable progress has been achieved in the past two decades for
subseasonal prediction. These achievements originate from the improved model physics, resolution,
initialization, as well as our improved understanding of the predictability sources. This progress is also
substantially prompted by the multiagency and multi-institute joint efforts, such as the North-American
Multi-Model Ensemble (NMME; Kirtman et al., 2013), IntraSeasonal Variability Hindcast Experiment
(ISVHE; Neena et al., 2014), the Subseasonal Experiment (SubX; http://cola.gmu.edu/kpegion/subx/), and
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the WWRP/WCRP subseasonal to seasonal prediction project (S2S; Vitart et al., 2016). Development of sta-
tistical models is also instrumental in identifying the subseasonal predictability sources (e.g., Black et al.,
2017; Johnson et al., 2013), which, in turn, provides guidance on the further model development and more
effective observational strategies.

In this study, our focus is on evaluating the predictability and exploring the most predictable modes (MPMs)
for subseasonal wintertime surface air temperature (SAT) prediction using a Geophysical Fluid Dynamics
Laboratory (GFDL) coupled model system. We consider lead times ranging from 1 to 7 weeks, with an
emphasis on week 3–5 predictions, given that this timescale lies between the traditional targets of weather
and climate prediction.

2. Model, Experiments, and Methodology
2.1. Model and Hindcast Experiments

The dynamical forecast model used here is based on the Forecast-oriented Low Ocean Resolution version of
GFDL model (Vecchi et al., 2014), but with a new double-plume convection scheme (Zhao et al., 2018). The
horizontal resolution for the atmospheric (ocean) model is about 50 km (100 km). The atmosphere (ocean)
has 32 (50) vertical levels. Initial conditions were generated through a nudging technique for both the atmo-
sphere and the ocean models. The atmospheric fields include winds, temperature, geopotential height, and
surface pressure, which are nudged toward the National Centers for Environmental Prediction Global
Forecast System analysis data. The sea surface temperature is nudged to the National Oceanic and
Atmospheric Administration Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature Analysis
(OISST, v2; Reynolds et al., 2007). In this study, we analyze forecasts that were initialized in December–
February. We have one case every 5 days and in total 198 (11 years × 3 months × 6 days/month) forecast
cases during an 11-year period (2003–2013). For each case, there are six ensemble members with each inte-
grated for 50 days. This forecast system has been used to study the Madden-Julian Oscillation (MJO) predic-
tion (Xiang et al., 2015) and tropical cyclone genesis predictions (Jiang et al., 2018; Xiang et al., 2014).

The verification SAT and 500 hPa geopotential height data are from the National Centers for Environmental
Prediction Global Forecast System analysis data. Although we focus on SAT predictions, we briefly examine
observed precipitation data from the Global Precipitation Climatology Project v2.2 (Huffman et al., 2016) in
association with the MJO.

The observational anomalous fields are calculated by removing the time mean and first three harmonics of
the climatological annual cycle from the observational data (2002–2013) following Wheeler and Hendon
(2004). The hindcast anomalies are obtained by removing the hindcast climatology as a function of hindcast
starting date and lead time. Because our focus here is the subseasonal prediction instead of the prediction of
subseasonal variability, we do not subtract the previous 120-day mean of anomalies so that variability at the
interannual and even longer timescales is retained for both observations and hindcasts. This is different from
our previous MJO prediction study (Xiang et al., 2015).

2.2. Average Predictability Time Analysis

To elaborate on the sources of predictability, we adopt the Average Predictability Time (APT) analysis pro-
posed by DelSole and Tippett (2009a, 2009b). This analysis identifies patterns that maximize predictability.
In this application, a standard measure of predictability is defined as

P τð Þ ¼ 1� σ2τ
σ2clim

; (1)

where σ2τ represents the variance of hindcast anomalies and the σ2clim is the time-averaged climatological var-
iance defined as the variance of all ensemble forecasts from different forecast lead times (τ). P(τ) typically has
a value near 1 for the shortest lead times and decreases to near 0 as the forecast variance approaches the cli-
matological variance. The APT is further defined as twice the sum of P(τ) over all lead times (weeks 1–7 in
the present application):

APT ¼ 2∑∞
τ¼1 1� σ2τ

σ2clim

� �
: (2)
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Through a series of derivations, maximizing APT leads to a generalized eigenvalue problem (DelSole &
Tippett, 2009a, 2009b):

2∑∞
τ¼1 ∑clim � ∑τð Þq ¼ λ∑climq: (3)

The eigenvectors q decompose the time series into individual modes with the first maximizing APT and the
second maximizing APT subject to being uncorrelated with the first one, and so on. The eigenvalue λ gives
APT value of one independent component. With the eigenvector q, the spatial pattern is obtained by regres-
sing the time series of qTx(τ, t, e) onto x(τ, t, e). Here x(τ, t, e) is the state variable at fixed lead time τ, start
time t, and ensemble member e. The decomposition based on APT is analogous to empirical orthogonal
function analysis except that it decomposes predictability instead of variance. For more details, we refer
the reader to DelSole and Tippett (2009a, 2009b) and several following studies (Jia et al., 2015; Yang
et al., 2013).

To assess the significance of the anomalous correlation, the effective sample size (Neff) is calculated by con-
sidering the autocorrelation in the observed and forecast data (Bretherton et al., 1999; Yang et al., 2013):

Neff ¼ N

1þ 2∑N�1
j¼1 1� j

N

� �
ρobs jð Þρmod jð Þ ; (4)

where N is the number of sample pairs and ρobs(j) and ρmod(j) are the sample autocorrelation of observation
and model hindcast at lag j.

3. Results

The variance of wintertime SAT anomalies is first examined for both observations and model hindcasts. The
hindcasts reasonably capture both the spatial pattern and the magnitude of the observational SAT anoma-
lies, with its strong variability in northern Eurasia, Alaska, Canada, as well as the Arctic region (supporting
information Figure S1).

3.1. Prediction of Week 3–5 SAT Anomalies

We next examine the prediction skill from the unfiltered model predictions during week 3–5
(Figures 1a–1c). This model shows encouraging results with a significant correlation skill over the majority
of regions during week 3, except the southwestern United States, northern Eurasia, Arctic, and the north-
east Atlantic Ocean (Figure 1a). The forecast skill generally decreases with the increase of forecast lead
time, while the correlation skill remains significant at the 5% level over a large portion of the land domain
for the week 4–5, such as eastern China, Canada, Alaska, southeastern United States, Amazon, and North
Africa (Figures 1b and 1c).

3.2. Identification of the MPMs

To reveal the predictability sources, the APT analysis is performedwith respect to the predicted weekly mean
SAT anomalies for six ensemble members from week 1 to 7. We choose 15 modes to maximize APT that
explain about 62% of the total SAT variance. Given the large sample of the hindcast data, the results are
not sensitive to either the number of total modes (we test 20 modes) or the choice of the forecast period
(we test week 1–4).

To demonstrate the importance of the leading modes in subseasonal prediction, the hindcast anomalies are
reconstructed using the spatial patterns and time series of the first eight MPMs. The reason to choose these
eight modes is that their corresponding time series can be skillfully predicted more than 3 weeks in
advance. Note that these eight MPMs can explain 37% of the total variance. Compared to the unfiltered
(raw) model, the reconstructed anomalies show a fairly comparable land SAT prediction skill at week
3–5 (Figure 1).

The first three MPMs are highlighted here as they dominate the longer timescale prediction (week 4–5). The
first MPM (MPM1) is characterized by pronounced positive SAT anomalies over the equatorial central and
eastern Pacific, accompanied by a seesaw pattern both in North America and the Eurasian continent
(Figure 2a). Superimposed on Figure 2a are the week 3 correlation coefficients between the time series of
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this mode and the 500 hPa geopotential height (H500) anomalies from model hindcasts. Clearly evident are
strong positive correlations over the whole tropics together with a Pacific-North America teleconnection pat-
tern forced by the equatorial Pacific warming. The SAT and midtropospheric circulation patterns of MPM1
resemble the characteristic patterns of the warm phase of the El Niño-Southern Oscillation (ENSO) variabil-
ity. Hereinafter, we refer to this mode as the ENSOmode. The large loading of this mode in the United States
is consistent with the finding (DelSole et al., 2017) that ENSO plays the dominant role in the wintertime SAT
prediction (week 3–4) over the Contiguous United States.

We note, as discussed below, that this mode also exhibits pronounced subseasonal variability, which indi-
cates that it also captures subseasonal Pacific-North America-like variability unrelated to ENSO. In the
North Atlantic basin, a meridional dipole pattern is reminiscent of a negative phase of North Atlantic
Oscillation (NAO; Figure 2a). This is consistent with the fact that the interannual variability in the tropical
Pacific is dominated by the central Pacific El Niño after the late 1990s (Xiang et al., 2013), which may have
more impact on the NAO than the eastern Pacific El Niño (Graf & Zanchettin, 2012). One way that ENSO
impacts the North Atlantic and European sector is through an indirect pathway from the stratosphere
(e.g., Butler et al., 2014; Polvani et al., 2017).

For the second MPM (MPM2), pronounced negative SAT anomalies are present in the northeast Canada,
Greenland, and northern Africa, together with the positive anomalies in the Eurasia continent and Arctic
(Figure 2b). At week 3, the associated anomalous H500 displays an enhanced subtropical high in the
North Atlantic and a strong Icelandic low, giving rise to stronger-than-average westerlies across the

Figure 1. The correlation skill of the unfiltered surface air temperature anomalies with a lead time of (a) 3, (b) 4, and
(c) 5 weeks. (d)–(f) are similar to (a)–(c) but for the reconstructed model forecast skill using the first eight most predictable
modes. The dots denote the region with the correlation skill significant at the 5% significance level considering the
effective sample size.
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midlatitudes. The gross features of this mode are reminiscent of the NAO-like (positive phase) circulation
pattern that brings warm air to the northern Europe and the eastern United States. Hereinafter, this mode
is referred as to the NAO mode.

The third MPM (MPM3) features a meridional dipole structure in both H500 and SAT over Eurasia, and pre-
dominantly positive SAT anomalies centered in North America (Figure 2c). This mode bears a resemblance
to the second empirical orthogonal function mode shown in Lin (2018). The formation of this mode is par-
tially linked to the stratospheric polar vortex, as discussed later. Since themajor loading of this mode is in the
Eurasian continent, we refer this mode as to the Eurasia Meridional Dipole (EMD) mode.

The time series of these three MPMs exhibit a wide range of timescales, consisting of subseasonal and inter-
annual components (Figure S2). Figure 2d shows the correlation coefficient of the time series between obser-
vations and hindcasts as a function of forecast lead times. Here the observational time series are obtained by
projecting observed SAT anomalies onto the spatial patterns of these three modes. For the first two modes,
the correlation coefficients decrease gradually but remain significant at nearly 7 weeks lead time at the 5%
significance level (Figure 2d). For the third mode (the EMD mode), the significant correlation skill extends
to 5 (6) weeks at the 5% (10%) level.

Compared to the first three modes, the other modes (modes 4 to 15) have a shorter timescale of variability.
The modes 4–8 primarily represent the middle to high latitude wave train pattern or the teleconnection pat-
tern associated with the tropical convective forcing (Figure S3), that can be skillfully predicted at 3 weeks
lead time at the 5% significance level. The other higher frequency modes (9–15) can only be skillfully pre-
dicted at 2 weeks lead time. Another noteworthy feature is that the relative contributions of these eight
modes on the regional SAT prediction differ dramatically. For example, for the Eurasia continent, most of
the prediction skill originates from the NAO and the EMD modes, while for North America, the modes 4–

Figure 2. (a) The spatial pattern of the first MPM (MPM1) of the weakly mean surface air temperature anomalies (°C)
during the wintertime (December–February). The contours show the correlation coefficient between the time series of
MPM1 and the 500 hPa geopotential height (H500) anomalies at week 3. Both surface air temperature and H500 are from
model hindcast results. (b) and (c) are similar to (a) but for the second and third MPMs (MPM2, MPM3). The variance
explained by these modes is shown in the parentheses. (d) The correlation skill between the observed and predicted time
series of these three modes as a function of lead times (solid lines). The dashed lines indicate the 5% significance level after
considering the effective sample size. MPM = most predictable mode.
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8 are also important. This is inferred by comparing the results with the reconstructed model from the first
three MPMs (Figure 1 vs Figure S4).

The subseasonal forecast skill also depends on forecast initial conditions. Figure 3a shows the time evolution
of the spatial correlation skill over the Northern Hemisphere extratropical land region (30–90°N) for the
3-week lead forecast. The prediction skill experiences prominent fluctuations at the interannual and
intraseasonal timescales. During some years (e.g., 2006–2007, 2009–2010, 2010–2011, 2011–2012,
2012–2013), the prediction skill is generally higher than the other years. The reconstructed model largely
captures the interannual fluctuations of the prediction skill. Figure 3b shows the scatter plot of the spatial
correlation skill (over the Northern Hemisphere extratropical land region) between the reconstructed model
and the unfiltered model. The unfiltered model forecast generally outperforms the reconstructed forecast
particularly when the prediction skill is relatively low. For the cases with higher prediction skill (r > 0.3
for both the unfiltered and filtered forecasts), the reconstructed model displays a slightly higher skill
compared to the unfiltered model (0.52 vs 0.47). Understanding the cause of this fluctuation is of importance
in order to identify the time window of opportunity for a skillful subseasonal forecast. Compared to the cases
with higher week 3 spatial correlation skill, the cases with lower spatial correlation skill does show a
symmetrically lower prediction skill (at week 1–5) for the first three MPMs (not shown).

Characteristics of precursor signals for these modes are vital to understand their predictability sources.
Figure 4 shows that the observational stratospheric polar vortex strength (1 week before forecast) is
significantly correlated (at 5% significance level) with the time series of MPM2/MPM3 at week 3 frommodel
hindcasts. Here the stratospheric polar vortex index is used to measure the strength of polar vortex, defined
as the zonal mean zonal wind at 50 hPa averaged over 60–90°N (Jia et al., 2017). Actually, significant
correlations are also found from week 1 to week 7 for both modes. Note that other modes are not
significantly correlated with the observational stratospheric polar vortex index. It suggests that the
predictability sources for both modes (NAO and EDM) originate, at least partially, from the stratosphere,
highlighting the importance of the stratosphere in S2S prediction.

Figure 3. (a) The time evolution of the spatial correlation skill over the Northern Hemisphere extratropical land region
(30–90°N) from unfiltered model hindcasts (black) and the reconstructed model using the eight most predictable modes
(red). The corresponding wintertime mean skill is shown as the black and red bars. (b) The scatter diagram of spatial
correlation skill from the reconstructed model (x axis) versus the unfiltered model (y axis). Red (blue) dots are the corre-
lation skill with the initially strongMJO events in phase 3 (7). All results are at week 3. MJO =Madden-Julian Oscillation.
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3.3. MJO and SAT Prediction

As the dominant tropical intraseasonal mode, the MJO exerts its impacts
not only in the tropics but also in the extratropics through the excitation of
poleward propagating Rossby waves (e.g., Donald et al., 2006; Moon et al.,
2011). More importantly, the MJO serves as one of the crucial
predictability sources to bridge the forecast gap between the weather
and seasonal predictions.

The relative high MJO prediction skill in the wintertime (about
17–31 days) in current dynamic models (e.g., Kim et al., 2014; Neena et al.,
2014; Vitart, 2017), measured by the bivariate correlation of the Real-time
Multivariate MJO (RMM) index (Wheeler & Hendon, 2004), makes it
possible to examine its direct impacts on the predictions of tropical
cyclones and other fields. Indeed, dynamical model results demonstrate
that the presence of MJO substantially influences the prediction of
tropical cyclone genesis (e.g., Chen & Lin, 2011; Jiang et al., 2018; Lee
et al., 2018; Xiang et al., 2014) as well as the extratropical NAO prediction
(e.g., Lin, Brunet, & Fontecilla Juan, 2010; Vitart, 2017).

For this GFDL model forecast system, wintertime MJO prediction skill is
about 27 days and even beyond 40 days for some specific phases (Xiang
et al., 2015). Figure 5 features composite results of anomalous SAT,
H500, and tropical precipitation 3 weeks after initially strong MJO
(RMM > 1.0) in phases 3 and 7. We focus on phases 3 and 7 because the
associated anomalous convection featuring an east-west dipole pattern
between the Indian Ocean and the western Pacific is particularly effective
at inducing extratropical circulation anomalies (Lin, Brunet, & Mo, 2010).
Consistent with a skillful MJO prediction (Xiang et al., 2015), the tropical
precipitation anomalies are well predicted for both phases (Figure 5). The
week 3 composite H500 anomalies following MJO phase 3 (7) projects
onto the positive (negative) phase of NAO starting from MJO phase 3
(7), which is consistent with previous work (Cassou, 2008; Lin et al.,
2009; Riddle et al., 2013). Note that the temperature anomalies have the
largest magnitude over North America and northern Eurasia, showing a
dynamically coherent pattern with circulation change. For initial MJO
phase 7, the predicted SAT and H500 anomalies are somewhat weaker
than the observational composites. Similar results are seen for the compo-
site results after subtracting the interannual signals (Figure S5), confirm-
ing the robustness of the results.

However, the contribution of MJO on the Northern Hemispheric SAT prediction is likely secondary.
Although the composite results possess strikingly similar patterns between hindcasts and observations
(Figure 5), the spatial correlation skill of the land SAT anomalies in the Northern Hemisphere extratropics
is rather scattered for those initialized with strong MJO in phases 3 and 7 (Figure 3b). For both phases, the
mean correlation skill is not statistically distinguishable from the average of all events. All other phases
starting with strong MJO events are also examined while they do not appear to differ significantly from
the inactive MJO cases in terms of the SAT prediction skill. This can be understood from several different
perspectives. First, the MJO-induced SAT anomalies are relatively weak with its magnitude only about half
of the total variance (Figure 5 vs Figure S1). This is in accord with the relatively weak NAO response
forced by MJO (about half of the total variance of NAO; Vitart, 2017). Second, the impacts from MJO
are confined to a limited area including Canada and the Arctic region for both phases (Figure 5). Third,
the mean state bias, such as the jet location in the Northern Hemisphere, may result in biased extratropical
teleconnections even with the “correct” tropical forcing due to MJO (e.g., Henderson et al., 2017).
Therefore, a skillful prediction of predictors does not necessarily entail a skillful prediction of its
climate impacts.

Figure 4. The scatter diagram between the stratospheric PVI at 1 week
before the forecast, and the time series of (a) MPM2 at week 3, (b) MPM3
at week 3. The corresponding correlation coefficients, significant at 5%
significance level for both modes, are shown in the upper-left corner. Note
that the time series of MPM2 and MPM3 are nearly orthogonal. The
stratospheric PVI is defined as the zonal mean zonal wind (m/s) at 50 hPa aver-
aged over 60–90°N. MPM =most predictable mode; PVI = polar vortex index.
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4. Summary and Discussion

Using a GFDL coupled model forecast system, the subseasonal SAT prediction performance is examined
based on wintertime hindcasts covering the 2003–2013 period. Results show a significant correlation skill
of weekly mean SAT anomalies over a large portion of land domains for the week 3–5 forecast. The forecast
skill primarily originates from eight MPMs with the first three as the ENSO mode, the NAO mode, and the
EMD mode.

The potential contribution of MJO to the subseasonal SAT prediction in the Northern Hemisphere extratro-
pical land region (30–90°N) is moderate and regional. The prediction skill varies fromweek to week and year
to year. Thus, it is thus critical to identify the time window of opportunity for subseasonal prediction during
which the forecast skill is relatively high.

At the seasonal timescale, the prediction skill of the NAO is strongly influenced by stratospheric conditions
related to the polar vortex strength (e.g., Jia et al., 2017; Scaife et al., 2015; Wang et al., 2017). Here it is found
that the NAO and the EMD modes are both strongly correlated with the stratospheric polar vortex strength
from the initial condition. It suggests that the stratospheric variability is an important component of subsea-
sonal SAT prediction, consistent with Tripathi Om et al. (2014).

Note that the overall subseasonal prediction skill is relatively low despite of the significant correlation skill
over a large portion of the land domains (Figure 1). Here the land model is not initialized although the land
tends to be adjusted accordingly with atmospheric nudging. Realistic landmodel initialization (such as snow
cover and snow depth) has been documented to play a principal role in the subseasonal prediction during the
wintertime (Orsolini et al., 2013). This strengthens the need for understanding and quantifying the role of

Figure 5. (a) Upper panel: Composite results of observational SAT (shading; °C) and H500 anomalies (contours; m)
3 weeks after an initially strong MJO in phase 3. Stippling represents the regions with more than 70% of events with
the same sign as the composite mean for SAT anomalies. Lower panel: Similar to upper panel but for the composite
precipitation anomalies (mm/day). (b) is similar to (a) but for model hindcast results. (c) and (d) are similar to (a) and
(b) but for composite results 3 weeks after the initially strong MJO in phase 7. Note that 20 (14) MJO events are found for
the composite analysis for MJO phase 3 (7). SAT = surface air temperature; MJO = Madden-Julian Oscillation.
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land initialization in subseasonal SAT prediction. Further improvement of dynamic models and the initia-
lization provides promise for the subseasonal prediction.

There are some caveats in this study. First, there is only one model used here. Whether the identified modes
are present in other model forecast systems remains to be seen. Second, the current study covers a limited
time sample (11 years). The amplitude and phase of NAO are sensitive to the period chosen. The MJO con-
nections to high-latitude SAT rely on the background mean state that may differ among different periods.
Thus, whether the current results are sensitive to the period chosen is also an open question. These questions
can be addressed by examining the WWRP/WCRP S2S data sets with more models and longer records.
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